Remote Tactile Transmission with Time Delay for Robotic Master-Slave Systems

نویسندگان

  • Shogo Okamoto
  • Masashi Konyo
  • Takashi Maeno
  • Satoshi Tadokoro
چکیده

This study develops a method to compensate for the communication time delay for tactile transmission systems. For transmitting tactile information from remote sites, the communication time delay degrades the validity of feedback. However, so far time delay compensation methods for tactile transmissions have yet to be proposed. For visual or force feedback systems, local models of remote environments were adopted for compensating the communication delay. The local models cancel the perceived time delay in sensory feedback signals by synchronizing them with the users’ operating movements. The objectives of this study are to extend the idea of the local model to tactile feedback systems and develop a system that delivers tactile roughness of textures from remote environments to the users of the system. The local model for tactile roughness is designed to reproduce the characteristic cutaneous deformations, including vibratory frequencies and amplitudes, similar to those that occur when a human finger scans rough textures. Physical properties in the local model are updated in real-time by a tactile sensor installed on the slave-side robot. Experiments to deliver the perceived roughness of textures were performed using the developed system. The results showed that the developed system can deliver the perceived roughness of textures. When the communication time delay was simulated, it was confirmed that the developed system eliminated the time delay perceived by the operators. This study concludes that the developed local model is effective for remote tactile transmissions. © Koninklijke Brill NV, Leiden, 2011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach

There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...

متن کامل

Design of PID Controller for Teleopration System with Genetic Algorithm

This paper presents a novel teleoperation controller for a nonlinear master–slave robotic system with constant time delay in communication channel. The proposed controller enables the teleoperation system to compensate human and environmental disturbances, while achieving master and slave position coordination in both free motion and contact situation. The current work basically extends the pas...

متن کامل

Power Scaling in Port-Hamiltonian Telemanipulation over Packet Switched Networks

Passivity is a very suitable tool to stabilize a telemanipulator; in fact, implementing each part of a telerobotic system as a passive system and interconnecting them in a power preserving way it is possible to achieve an intrinsically passive system which is consequently characterized by a stable behavior. In [1] scattering theory has been exploited to build a communication channel that is pas...

متن کامل

Model-mediated Teleoperation with Predictive Models and Relative Tracking

This paper presents a model-mediated approach for teleoperation with haptic feedback in the presence of time delays on the order of seconds. The target application for the control scheme is teleoperation of robotic manipulators for space systems in geosynchronous orbit. Previous work in model-mediated teleoperation allowed operators to interact with a virtual model of the remote robot and envir...

متن کامل

Force Reflecting Bilateral Control of Master-Slave Systems in Teleoperation

In this paper, a simple structure design with arbitrary motion/force scaling to control teleoperation systems, with model mismatches is presented. The goal of this paper is to achieve transparency in presence of uncertainties. The master–slave systems are approximated by linear dynamic models with perturbed parameters, which is called the model mismatch. Moreover, the time delay in communicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced Robotics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011